EUNIS Microchannel Plate Quantum Efficiency Measurement John O'Neill

Mentors:

Adrian Daw Doug Rabin

7/27/2011

EUNIS Microchannel Plates

Specifications:

- 25mm diameter
- 6µm pore diameter
- >39% QE at 30nm (KBr)

Testing MCP Quantum Efficiency

Procedure:

- Uninstall old MCP
- Install new MCP
- Attach detector to monochromator, 125nm
- Measure current from CsTe PMT, known QE
- Measure EUNIS MCP
- Obtain relative QE, approximately 13%

KBr Quantum Efficiency

From Siegmund and Gaines (Proc. SPIE, 1990)

Simulating the MCP in IDL

- Start in 2D then build full 3D model
- Looking for how much the field extends into the MCP pores
- Contour plot of 2D cross section MCP shows minimal field in the pores

Equipotential lines in volts, axis are in pixels

Conclusion

- We are confident the reported QE from our testing was from the web only.
- The MCP QE x gain will be measured relative to a photodiode in the EUNIS lab, providing another diagnostic to confirm the total QE.
- The entire optical system will be calibrated end to end at Rutherford Appleton Lab after flight.

Thanks

Thanks to the whole EUNUS team:

J. Brosius, A. Daw, J. Haas, G. Hilton, D. Linard, T. Plummer, D. Rabin, D. Varney

 Also thanks to Ekaterina Verner and Fred Bruhweiler of CUA